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Abstract. We investigate the phase diagram of a quarter filled Hubbard ladder with nearest-neighbor
Coulomb repulsion using bosonization and renormalization group approach. Focusing on the strong-
repulsion regime, we discuss the effect of an interchain exchange interaction J⊥ and interchain repulsion
V⊥ on the possible ground states of the system and charge order configurations. Since the spin excitations
always possess a gap, we find competing bond-order wave and charge density wave phases as possible
ground states of the ladder model. We discuss the elementary excitations in these various phases and point
an analogy between the excitations on some of these phases and those of a Kondo-Heisenberg insulator.
We also study the order of the quantum phase transitions between the different ground states of the sys-
tem. We obtain second order transitions in the Ising or SU(2)2 universality class or first order transitions.
We map the complete phase diagram in the J⊥ − V⊥ plane by integrating perturbative renormalization-
group equations. Finally, we discuss the effect of doping away from half-filling and the effect of an applied
magnetic field.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) –
71.10.Hf Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems
– 71.10.Fd Lattice fermion models (Hubbard model, etc.)

1 Introduction

Charge ordering is a general phenomenon in condensed
matter physics that has been recently observed in a
variety of compounds including rare earth mangan-
ites [1,2], quasi-one-dimensional (TMTTF)2X conduc-
tors [3], cuprate or nickelate materials [4,5]. A very par-
ticular form of charge order in these latter materials is
the formation of charge stripes, that are domain walls
between hole rich and hole poor regions. From the the-
oretical point of view, charge ordering is a crystalliza-
tion of the electron liquid which occurs when long-range
Coulomb repulsion [6] dominates over kinetic energy. In
one dimension, charge ordering and more generally metal-
insulator transitions can be studied in great details due
to the existence of powerful analytical [7–9] and numeri-
cal [10] methods. In the case of a one-dimensional system,
the simplest model [11] of interacting electrons that allows
for charge ordering is the Hubbard model extended with
an additional nearest-neighbor Coulomb interaction V .
Studies of the metal insulator transition in one dimen-
sion show that charge ordered or Mott insulating states
can form at commensurate fillings for sufficiently strong
repulsion [12,13]. In relation with organic compounds, the
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quarter-filled extended Hubbard model on a single chain
has been studied in details [14]. As a first step towards
understanding charge ordering and stripe formation in
strongly correlated electron models, numerical studies of
coupled chain systems at commensurate fillings [15–19]
(ladders) have also been performed. Half filled ladder sys-
tems are Mott insulators that display a spin gap analo-
gous to the Haldane gap in spin-1 chains [20] when made
of an even number of coupled chains. Ladder models are
not only of theoretical interest. Quite a few half-filled lad-
der systems have been synthesized both organic and in-
organic and the spin gap behavior has been character-
ized in great details [21–26]. Away from half-filling and
more generally commensurate filling, ladders are expected
to be conducting. The persistence of the spin gap away
from half-filling has been proposed to give rise to a par-
ing mechanism and to superconductivity [27]. This sugges-
tion has given rise to intense theoretical studies both an-
alytical [28–31] and numerical [32–36] that confirmed the
presence of superconducting correlations at incommensu-
rate fillings. Experimentally, the two-leg ladder compound
Sr14Cu24O41 [37] can be doped away from half filling and
under pressure displays a superconducting transition. Re-
cently, the compound α′ − NaV2O5, initially identified as
an inorganic spin Peierls compound [38], was shown to be
a quarter-filled ladder [39–42], that undergoes a transition
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at Tc = 34 K corresponding to the formation of a charge
ordered state with a zig-zag charge pattern and the open-
ing of a spin gap [43–46]. This has prompted numerical
studies of quarter-filled extended Hubbard two-leg ladder
systems [47,48] that exhibit the formation of a zig-zag
charge ordered state at large repulsion. Interestingly, the
charge ordered state of the two-leg ladder at quarter filling
presents a spin gap in contrast to the single chain. Analytic
studies of insulating states on a two-leg ladder have been
mostly confined to the half-filled case [49–52] or to mean
field [42,53] approximations and strong coupling expan-
sions [41,54,55] in the quarter-filled case. In the present
paper we analyze the phase diagram of the quarter-filled
two-leg Hubbard ladder with interchain Coulomb repul-
sion V⊥ and exchange coupling J⊥, by using bosonization
and renormalization group (RG) methods. Focusing on
the regime of strong repulsion, we discuss charge orders
and the elementary excitations of the insulating phase.
Due to the presence of a spin gap, the competing ground
states are bond-order wave states (BOW) and charge den-
sity wave states (CDW). We analyze the phase transitions
between these states using a perturbative renormalization
group approach and a mapping of spin excitations to a
Majorana fermion theory. The plan of the paper is the fol-
lowing. In Section 2 we introduce the model and discuss
the physics of two simple limits, the large on-site repul-
sion and the large interchain exchange limit. In Section 3
we give the details of the bosonization treatment and of
the derivation of the renormalization group (RG) equa-
tions. In Section 4 we introduce the order parameters of
the insulating phases and the describe the charge ordered
ground states obtained by the values of the phase fields
that minimize the energy. In Section 5 we describe the el-
ementary charge and spin excitations of each ground state
and discuss the analogy with Kondo-Heisenberg-Hubbard
chain in a particular case. In Section 6 we discuss the na-
ture of the transitions among the various phases in the
antisymmetric charge sector and the spin sector. This is
partially accomplished by a mapping to a theory of Majo-
rana fermions and by a mapping to an effective quantum
Ising model in the limit of strong interchain repulsion. Fi-
nally, we discuss the results of the phase diagram obtained
by the numerical integration of the RG equations. We also
briefly discuss the commensurate-incommensurate transi-
tions produced by the application of a magnetic field or
by doping away from quarter-filling.

2 Hamiltonian and some simple limits

We consider the quarter-filled extended Hubbard model
on a two leg ladder. The Hamiltonian reads:

H = −t
∑
i,p,σ

(c†i+1,p,σci,p,σ + c†i,p,σci+1,p,σ)

−t⊥
∑
i,σ

(c†i,2,σci,1,σ + h.c.) + U
∑
i,p

ni,p,↑ni,p,↓

+V‖
∑
i,p

ni,pni+1,p + V⊥
∑

i

ni,1ni,2, (1)

where ni,p,σ = c†i,p,σci,p,σ, ni,p = ni,p,↑ + ni,p,↓, i is the
site index, p the chain index, t the intrachain hopping,
t⊥ the interchain hopping, U the on-site repulsion, V‖ the
nearest-neighbor repulsion, and V⊥ the interchain repul-
sion.

Since we will be focusing on the case of very strongly
repulsive interactions, the single-particle interchain hop-
ping term t⊥ will be irrelevant in this regime. However, it
is well known that even when t⊥ is irrelevant, it generates
an interchain exchange term in the Hamiltonian [56,30].
Thus, the Hamiltonian (1) should also include an inter-
chain exchange term,

Hexch. = J⊥
∑

i

Si,1 · Si,2, (2)

where Si,p = c†i,p,ασα,βci,p,β . In the limit of t⊥ � U ,
J⊥ is estimated to second order perturbation theory in
t⊥/U as J⊥ ∼ t2⊥/U . In the following, we will consider the
Hamiltonian (1) completed by the term (2) and neglect al-
together the interchain hopping t⊥. In fact, another model
of interest is the two leg t-J ladder at quarter filling. The
Hamiltonian of this model reads:

H = −t
∑
i,p,σ

P(c†i+1,p,σci,p,σ + c†i,p,σci+1,p,σ)P

−t⊥
∑
i,σ

P(c†i,2,σci,1,σ + h.c.)P

+J‖
∑
i,p

Si,p · Si,p+1 + V‖
∑
i,p

ni,pni+1,p

+J⊥
∑

i

Si,1 · Si,2 + V⊥
∑

i

ni,1ni,2, (3)

where P is an operator that projects onto singly occupied
states [19,57]. We will thus treat J⊥ as a parameter inde-
pendent of t, U in (1) in order to be able to discuss also
results relevant to the two-leg t-J ladder model. In the rest
of the present section, we will illustrate two simple limit-
ing cases of the problem defined by the Hamiltonian (1–2)
which display insulating charge ordered ground states.

2.1 Large on-site repulsion

Let us begin by considering the limit U → ∞ in the Hamil-
tonian (1–2). In this limit, it is not possible to put two
fermions on the same site even when they have opposite
spins and from the point of view of charge excitations,
the system behaves as if it was made of spinless fermions
with a Fermi wavevector k′F twice the one of the spinful
fermions at U = 0 [58]. The original spinful fermions sys-
tem being quarter-filled, the spinless fermions system is
half-filled and its effective Hamiltonian reads:

H = −t
∑
i,p

(a†i+1,pai,p + a†i,pai+1,p) + V‖
∑
i,p

ni,pni+1,p

+V⊥
∑

i

ni,1ni,2, (4)
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where now ni,p = a†i,pai,p. The bosonization of the Hamil-
tonian (4) is straightforward. The relevant formulas can be
found for instance in reference [9]. We obtain the following
bosonized Hamiltonian:

H =
∑

r=1,2

{∫
dx
2π

[
uK(πΠr)2 +

u

K
(∂xφr)2

]

+
2g

(2πa)2

∫
dx cos 4φr

}
+
V⊥a
π2

∫
dx∂xφ1∂xφ2

+
V⊥a
(πa)2

∫
dx cos 2φ1 cos 2φ2, (5)

where cos 4φ1,2 represent the intrachain Umklapp inter-
actions. Let us first set V⊥ = 0 and consider the case
in which the intrachain Umklapp processes are irrelevant.
This case corresponds to |V‖| < 2t. The Hamiltonian (4)
has then a Luttinger liquid ground state for V⊥ = 0, and
the renormalized Luttinger exponent K∗ can be obtained
from studies of the t− V model [59] as:

K∗ =
1

2 − 2
π arccos

(
V‖
2t

) · (6)

In the Luttinger liquid regime, we can set g = 0 and re-
place K by K∗ in the Hamiltonian (5). We now turn on
V⊥ small enough that the previous approximation remains
valid. The Hamiltonian (5), is then decoupled by introduc-
ing the fields φ± = (φ1 ± φ2)/

√
2 leading to the following

Hamiltonian:

H = H+ +H−,

Hr =
∫

dx
2π

[
urKr(πΠr)2 +

ur

Kr
(∂xφr)2

]

+
2V⊥a
(2πa)2

∫
dx cos

√
8φr, (7)

where r = ± and:

u2
r = u2

(
1 + r

K∗V⊥a
πu

)

K2
r = (K∗)2

(
1 + r

K∗V⊥a
πu

)−1

. (8)

For Kr < 1, the term cos
√

8φr is relevant and opens a
gap in the charge modes. If V⊥ � u/a, this implies that
the gap opens as soon as K∗ < 1, whereas the intrachain
Umklapp processes become relevant only for K∗ = 1/2.
We thus see that for a wide range of 0 < V‖ < 2t, al-
though intrachain repulsion V‖ alone is too weak to open
a charge gap by itself, the existence of a nonzero inter-
chain repulsion is sufficient to induce an insulating ground
state. This is consistent with the numerical observation of
a charge gap state forming for V‖ > 0 and t⊥ < t at large U
in reference [48]. In that insulating state, the charge gap
should vary as ∆ρ+ ∼ u/a(V⊥a/u)1/(2−K+).

We note from (6) that K∗ = 1 corresponds to V‖ = 0,
i.e. the Hamiltonian (7) is identical to the bosonized

Hamiltonian of the half-filled 1D Hubbard chain, φ+ play-
ing the role of φρ, and φ− playing the role of φσ. As a
result, although the total charge mode is gapful, the anti-
symmetric charge mode remains gapless. This insulating
state presents the same SU(2)×SU(2) ∼ SO(4) symmetry
as the Hubbard model. In particular, the gapped charge
excitations behave like those of the half-filled Hubbard
model and the charge gap is ∆ρ+ ∼ u/a exp(−Cu/(V⊥a)).

To determine the long range order that is realized in
the ground state, we need to fix the values of 〈φ1,2〉 that
minimize the classical ground state energy, i.e. require
that cos 2〈φ1〉 cos 2〈φ2〉 is negative. Since the density of
the spinless fermions reads:

ρp(x) = − 1
π
∂xφp(x) +

1
πa

cos(2φp − 2k′Fx), (9)

where p = 1, 2 is the chain index, this leads to two out
of phase charge density waves of wavevector 2k′F = π

a on
chains 1 and 2, i.e. a zig-zag charge ordering. This ordering
is represented in Figure 1. We note that in reference [48], it
was found that the charge ordering was formed for U = ∞
only when V‖ > 2t although a charge gap was obtained for
V‖ > 0. The reason for this discrepancy in reference [48]
could be the presence of t/t⊥ ∼ 1. Turning to transport
properties, from (9) the long wavelength density on chain p
is ρp(x) = − 1

π∂xφp. By considering the topological charge
of the sine-Gordon models (7), one easily obtains that a
charge solitons carries the electrical charge ±e. The a.c.
electrical conductivity of this system can be obtained from
the form factor expansion [60,61].

When V‖ > 2t, the interchain Umklapp processes be-
come relevant and induce the formation of charge density
waves on each chain [62]. The effect of V⊥ is to lock the
respective phases of these charge density waves into a zig-
zag pattern. Zig-zag charge ordering is thus ubiquitous in
the limit U = ∞.

2.2 Large interchain exchange

In the limit in which J⊥ → ∞ in (1–2) or in (3), it is
again possible to derive a simplified Hamiltonian in a low-
energy subspace. Namely, one can restrict to a subspace in
which fermions form spin singlet pairs on the same rung.
These pairs can then be treated as hardcore bosons [34]
moving on a single chain and carrying a charge 2e. For a
quarter filled fermion system, the effective boson system
is at half-filling. The effective bosonic Hamiltonian reads:

H = −t̃
∑

i

(b†ibi+1 + h.c.) + Ṽ
∑

i

nini+1, (10)

where bi =
∑

σ σci,1,σci,2,−σ, annihilates a singlet pair
on site i. In the limit J⊥ � t, the coefficients t̃, Ṽ can
be obtain from second order perturbation theory as t̃ =
t2/J⊥, Ṽ = 2t2/J⊥ + V‖. The Hamiltonian (10) is solved
exactly by the Bethe ansatz [62], and its spectrum has a
gap for V‖ > 0. A bosonization description [62–64] of the
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low energy excitations of this system gives:

H=
∫

dx
2π

[
uK(πΠb)2+

u

K
(∂xφb)2

]
− 2∆

(2πa)2

∫
dx cos 4φb,

(11)
where the mode φb describes the charge excitations of the
hardcore boson system. The electrical charge density is
given by:

ρe(x) = −2e
π
∂xφb + 2e

eiπ x
a

πa
cos 2φb. (12)

In the gapped regime, 〈φb〉 = 0, and the ground state of
this system is formed of singlet pairs in a charge ordered
state as represented in Figure 7. We therefore see that in
the regime of strong interaction, both J⊥ and V⊥ will in-
duce a charge ordering. However, J⊥ favors a phase with
stripes formed along the rungs of the system, whereas V⊥
favors a zig-zag charge ordering. As a result, the com-
petition between J⊥ and V⊥ induces a frustration in the
system that can lead to a variety of charge ordering pat-
terns.

3 Bosonization description

In the present section, we derive a bosonized representa-
tion of the Hamiltonian (1–2) in the limit J⊥, V⊥ � t.
For J⊥ = V⊥ = 0, the chains are decoupled, and the
Hamiltonian describing their low energy, long wavelength
excitations reads:

H =
∑

p=1,2

Hρ,p +Hσ,p (13)

Hρ,p =
∫

dx
[
uρKρ(πΠρ,p)2 +

uρ

Kρ
(∂xφρ,p)2

]
(14)

Hσ,p =
∫

dx
[
uσKσ(πΠσ,p)2 +

uσ

Kσ
(∂xφσ,p)2

]
(15)

where the fields satisfy to canonical commutation relations
[φν,p(x), Πν′,p′(x′)] = iδν,ν′δp,p′δ(x− x′), (ν = ρ, σ). Since
we do not assume U, V‖ � t, we use the renormalized val-
ues of uρ,Kρ, uσ,Kσ in the bosonized Hamiltonian of the
decoupled chains (14–15). Spin rotational invariance im-
poses the renormalized value of Kσ = 1. The renormalized
values of the remaining quantities can be obtained from
the Bethe ansatz [65–68] for the Hubbard model or the
t-J model at the supersymmetric point, or from numerical
calculations in the case of a non-integrable model [69–71].

3.1 Derivation of interchain coupling

In Section 2.1 we have seen that the 4kF harmonics in
the fermion density play a crucial role for U/t � 1. The
expression of the 4kF harmonics in terms of the boson
fields can be obtained from references [72,73]:

ρr(x) = −
√

2
π
∂xφρr +

ei(
√

2φρr−2kF x)

πa
cos

√
2φσr (x)

+
C

πa
ei2(

√
2φρr−2kF x), (16)

where r = 1, 2 and kF = π
4a . For U → ∞, we recover

the bosonized expression (9) of the density of spinless
fermions with k′F = 2kF , φ =

√
2φρ and K = 2Kρ. Using

the expression (16) of the fermion density, we obtain the
bosonized expression of the interchain repulsion V⊥:

HV⊥ = V⊥a
∫

dx
[

2
π2
∂xφρ1∂xφρ2

+
2

(πa)2
cos

√
2(φρ1 − φρ2 ) cos

√
2φσ1 cos

√
2φσ2

+
C2

(πa)2
cos

√
8φρ1 cos

√
8φρ2

]
. (17)

To obtain the bosonized expression of the spin ex-
change interaction, we need the spin density operators:

Sx
p (x) =

1
πa

cos
√

2θσ,p(x) cos
√

2φσ,p(x)

+
ei
√

2φρ,p−2kF x

2πa
cos

√
2θσ,p(x), (18)

Sy
p (x) =

1
πa

sin
√

2θσ,p(x) cos
√

2φσ,p(x)

+
ei
√

2φρ,p−2kF x

2πa
sin

√
2θσ,p(x), (19)

Sz
p(x) = − 1

π
√

2
∂xφσ,p

+
ei
√

2φρ,p−2kF x

2πa
sin

√
2φσ,p(x), (20)

where θν,p = π
∫ x

Πν,p(x′)dx′. Since the terms coming
from the 4kF harmonics are less relevant than those
produced by the 2kF harmonics, in equations (18–20)
we have altogether neglected the 4kF harmonics, whose
expression can be found in the Appendix B. From the
bosonized expression of the spin densities, we obtain the
exchange interaction as:

HJ⊥ =
J⊥
2π2

∫
dx∂xφσ,1∂xφσ,2

+
J⊥

2(πa)2

∫
dx cos

√
2(θσ,1 − θσ,2) cos

√
2(φσ,1 + φσ,2)

+
J⊥

(2πa)2

∫
dx cos

√
2(φρ,1 − φρ,2)

[
2 cos

√
2(θσ,1 − θσ,2)

+ cos
√

2(φσ,1 − φσ,2) −
√

2(φσ,1 + φσ,2)
]
. (21)

The total interchain interaction Hamiltonian H⊥ =
HV⊥ +HJ⊥ , is more conveniently written by introducing



E. Orignac and R. Citro: Charge density waves and bond order waves in a quarter filled extended Hubbard ladder 423

the new canonically conjugate fields [74] φν,± = (φν,1 ±
φν,2)/

√
2 and Πν,± = (Πν,1 ±Πν,2)/

√
2, as:

H⊥ =
(4V⊥ + J⊥)a

(2πa)2

∫
dx cos 2φρ− cos 2φσ−

+
(4V⊥ − J⊥)a

(2πa)2

∫
dx cos 2φρ− cos 2φσ+

+
2J⊥a
(2πa)2

∫
dx cos 2φρ− cos 2θσ−

+
2C2V⊥a
(2πa)2

∫
dx(cos 4φρ− + cos 4φρ+)

+
V⊥
π2

∫
dx

[
(∂xφρ+)2 − (∂xφρ−)2

]

+
J⊥
4π2

∫
dx

[
(∂xφσ+)2 − (∂xφσ−)2

]
. (22)

From the bosonized expression (22) of the inter-
chain interactions and the Hamiltonians of the decoupled
chains (14–15) we obtain the full bosonized form of the
Hamiltonian (1–2). The total charge mode φρ+ decouples
from the spin and staggered charge modes. Below, we will
start discussing the properties of the Hamiltonians of these
modes.

3.2 Total charge Hamiltonian

The total charge excitation Hamiltonian is:

Hρ+ =
∫

dx
2π

[
uρ+Kρ+(πΠρ+)2 +

uρ+

Kρ+
(∂xφρ+)2

]

+
2g0

(2πa)2

∫
dx cos 4φρ+, (23)

where:

uρ+ = uρ

(
1 +

2KρV⊥a
πuρ

) 1
2

(24)

Kρ+ = Kρ

(
1 +

2KρV⊥a
πuρ

)− 1
2

(25)

g0 = C2V⊥. (26)

The expression of the interchain coupling g0 in (23) can
also be derived in perturbation theory by the approach
of reference [14] and a sketch of such derivation can be
found in the Appendix A. We note that the same sine-
Gordon Hamiltonian was derived in Section 2.1 in the limit
U/t → ∞, with the identification φ+ =

√
2φρ, K = 2Kρ,

K+ = 2Kρ+, and C = 1. A similar Hamiltonian was also
obtained in Section 2.2 in the limit J⊥ → ∞. This fact
indicates a continuity relation between the weak and the

strong coupling regimes for the charge excitations. Finally,
the Hamiltonian for the total charge mode (23) can also
be recovered from a general argument [19,75]: From equa-
tion (16), it is easily seen that a translation by one lat-
tice site amounts to making

√
2φρ,n → √

2φρ,n − π/2,
and thus φρ+ → φρ+ − π/2. Translation invariance of
the lattice Hamiltonian requires the continuum bosonized
Hamiltonian to be invariant under such transformation.
The most relevant Umklapp operator compatible with
this symmetry is cos 4φρ+, and it should be the opera-
tor responsible for the opening of the gap in the charge
modes at quarter-filling. As a result, in the strong cou-
pling regime, we find a boundary between the gapped and
the gapless regime given by Kρ+ = 1/2. Concerning the
intrachain Umklapp terms, they are of the form [12,13]
cos 4

√
2φ1,2 and become relevant only for Kρ < 1/4.

Thus we can safely neglect them compared with inter-
chain Umklapp terms. A final remark is in order concern-
ing the sign of g0. In Appendix B, we show that the in-
teraction in the spin sector only produces a term of the
form cos 4φρ+ cos 2θσ− cos 2φσ+. This latter term is less
relevant than a term of the form cos 4φρ+, so that we can
usually neglect it and assume g0 > 0. However, if the spin
gap in the system is large, this term cannot be neglected
and contributes a correction cos 4φρ+〈cos 2θσ− cos 2φσ+〉
to the Hamiltonian (23). This can result in a change of the
sign of g0. In that case, instead of having 〈φρ+〉 = π

4 in
the ground state, we should have instead 〈φρ+〉 = 0. In the
following we will discuss both the phases with 〈φρ+〉 = π

4
and 〈φρ+〉 = 0. The latter ones are expected to be ob-
tained when J⊥ � V⊥ since we need a large spin gap to
modify the sign of g0.

3.3 Spin and charge difference Hamiltonian

From equations (14–15) and equation (22), we obtain the
Hamiltonian describing the interaction of spin modes φσ±
and interchain charge modes φρ−. Under renormalization
group (RG) transformation, besides the interactions al-
ready present in the bare Hamiltonians, new interactions
can be generated. Thus the Hamiltonian to consider reads:

H̃ = Hρ− +Hσ+ +Hσ−

=
∫

dx
2π

∑
ν∈{ρ−,σ+,σ−}

[
uνKν(πΠν)2 +

uν

Kν
(∂xφν)2

]

+
2g1

(2πa)2

∫
dx cos 2φσ+ cos 2φσ−

+
2g2

(2πa)2

∫
dx cos 2φσ+ cos 2θσ−

+
2g3

(2πa)2

∫
dx cos 4φρ−

+
2g4

(2πa)2

∫
dx cos 2φρ− cos 2φσ+

+
2g5

(2πa)2

∫
dx cos 2φρ− cos 2φσ−

+
2g6

(2πa)2

∫
dx cos 2φρ− cos 2θσ−, (27)
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where:

uρ− = uρ

(
1 − 2V⊥Kρa

πuρ

)1/2

(28)

uσ+ = uσ

(
1 +

J⊥a
2πuρ

)1/2

, uσ− = uσ

(
1− J⊥a

2πvF

)1/2

, (29)

Kρ− = Kρ

(
1 − 2V⊥Kρa

πuρ

)−1/2

, (30)

Kσ+ =
(

1 +
J⊥a
2πvF

)−1/2

, Kσ− =
(

1 − J⊥a
2πvF

)−1/2

, (31)

g1 = 0, g2 = J⊥a, g3 = 2C2V⊥a, (32)

g4 = (2V⊥ − J⊥
2

)a, g5 = (2V⊥ +
J⊥
2

)a, g6 = J⊥a. (33)

Note that in equations (28), we have put g1 = 0 because
the intrachain spin interaction in the repulsive Hubbard
model are marginally irrelevant. In full rigor, we should
have added a small marginally irrelevant interaction to the
Hamiltonian (15) and we would have obtained g1 > 0 and
slightly modified expressions of Kσ±. In spite of the fact
that we have put g1 = 0 in the initial conditions, in the
following we will also discuss the case of a relevant g1 un-
der RG. We also note that the Hamiltonian (27) possesses
a discrete global gauge invariance under the simultaneous
transformation:

φσ± → φσ± +
π

2
θσ− → θσ− +

π

2
φρ− → φρ− +

π

2
· (34)

To study the Hamiltonian (27) RG equations can be
derived. Velocity differences between the various modes
can be neglected, and one can take uσ± = uρ− = vF .
Introducing yi = gi/(πvF ) andKσr = 1+yσr/2, and using
the operator product expansion (OPE) methods [76], the
RG equations read:

d
dl

(
1

Kρ−

)
= y2

3 +
1
8
(y2

4 + y2
5 + y2

6), (35)

dyσ−
dl

=
1
4
(y2

6 + y2
2 − y2

1 − y2
5), (36)

dyσ+

dl
= −1

4
(y2

1 + y2
2 + y2

4), (37)

dy1
dl

= −1
2

[(yσ+ + yσ−)y1 + y4y5] , (38)

dy2
dl

= −1
2

[(yσ+ − yσ−)y2 + y4y6] , (39)

dy3
dl

= (2 − 4Kρ−)y3 − 1
8
(y2

4 + y2
5 + y2

6), (40)

dy4
dl

= (1 −Kρ−)y4− 1
2
(yσ+y4+y1y5 + y2y6 + y3y4), (41)

dy5
dl

= (1 −Kρ−)y5 − 1
2
(yσ−y5 + y3y5 + y1y4), (42)

dy6
dl

= (1 −Kρ−)y6 +
1
2
(yσ−y6 − y3y6 − y2y4). (43)

We see from these equations that although y1 is initially
zero, it becomes non-zero under the RG flow. The fact
that the problem under consideration has SU(2) spin rota-
tional invariance leads to a simplification of the RG equa-
tions (35–43). The initial conditions (28–33) lead to the
following relations ∀l:

yσ+(l) + yσ−(l) = y1(l), (44)

yσ−(l) − yσ+(l) = y2(l), (45)

y5(l) − y4(l) = y6(l). (46)

These conditions ensure the SU(2) symmetry of the
RG flow and reduce the flow from a curve in a nine-
dimensional space to a curve in a six-dimensional hyper-
plane. The simplified RG equations now reads:

d
dl

(
1

Kρ−

)
= y2

3 +
1
4
(y2

4 + y2
6 + y4y6)

dy1
dl

= −1
2
(y2

1 + y2
4 + y4y6)

dy2
dl

=
1
2
(y2

2 − y4y6)

dy3
dl

= (2 − 4Kρ−)y3 − 1
4
(y2

4 + y2
6 + y4y6)

dy4
dl

= (1 −Kρ−)y4 − 1
4
(3y1y4 − y2y4

+ 2y2y6 + 2y1y6 + 2y3y4)

dy6
dl

= (1 −Kρ−)y6 +
1
4
(y1y6 + y2y6 − 2y3y6 − 2y2y4).

(47)

The flow of these equations will be discussed in Section 6.
Here, we want to discuss briefly the possible fixed points
within a semiclassical argument, i.e. by considering the
expectation values of the phase fields that minimize the
classical ground state energy. By looking at the possible
classical minima, we can distinguish two regimes. In the
first regime, 〈φρ−〉 = 0, π

2 and 〈cos 2φρ−〉 
= 0. This case
is similar to that obtained in ladders at incommensurate
filling [30,31,74]. In this regime the relevance of the terms
g4,5,6 is responsible for the presence of the spin gap. In
the second regime, 〈φρ−〉 = ±π

4 , so that 〈cos 4φρ−〉 
= 0,
and 〈cos 2φρ−〉 = 0. This regime corresponds to g3 be-
ing the dominant interaction, and g4,5,6 being less rel-
evant interactions. This case is specific of the quarter-
filled ladder, and corresponds in the limit U = ∞ of Sec-
tion 2.1 to the formation of the gap in φ−. We note that
in the present regime, spin gaps can also be generated by
the g1,2 terms. When g1 is the relevant interaction, the
corresponding bosonized expression can be rewritten as
∼ g1(cos

√
8φ1 + cos

√
8φ2), so that the spin gaps corre-

spond to two independent intrachain spin gaps. We also
note that in order to preserve spin rotational invariance,
we need to have g1 < 0 in that case.
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It is possible to give a roughly estimate of the pa-
rameters region where each regime dominate by looking
at the scaling dimensions of the operators. The opera-
tor cos 4φρ− has scaling dimension 4Kρ− so that it is rel-
evant for Kρ− < 1/2. The operators cos 2φρ− cos 2φσ−,
cos 2φρ− cos 2φσ+, cos 2φρ− cos 2θσ− have respective scal-
ing dimensions Kρ− + Kσ−, Kρ− + Kσ+, Kρ− + 1/Kσ−.
Taking into account the spin rotational symmetry, this im-
plies that these operators have all the dimension Kρ− + 1
and become relevant for Kρ− < 1. The operator cos 4φρ−
becomes the most relevant operator when 4Kρ− < 1 +
Kρ−, i.e. for Kρ− < 1/3. Therefore, we expect to have
the first regime in the limit of a repulsion not too strong,
1/3 < Kρ− < 1/2, and the second regime in the case of a
stronger repulsion 1/4 < Kρ− < 1/2.

4 Phase diagram

In this section, we describe the various insulating phases
predicted from the renormalization group equations (47).
In order to describe the possible ground states in the phase
diagram, we introduce first the corresponding order pa-
rameters.

4.1 Order parameters

Since for strong repulsion the system has a gap in the
spin excitations, the possible order parameters can only
be bond-order waves (BOW) and charge density waves
(CDW). We will denote the corresponding phases as
(qx, qy)−BOW, and (qx, qy)−CDW where qx = π/2 or π
and qy = 0, π or qy = ±π/2 if qx = π/2. The phases with a
qx = π ordering have at least two-fold degenerate ground
state, while the phases with a qx = π

2 have a four-fold
degenerate ground state.

On the lattice, these operators are defined as:

OCDW(π,qy)(i) = (−)i(ni,1 + cos(qy)ni,2)(qy = 0, π) (48)

OBOW(π,qy)(i) = (−)i
∑

σ

(c†i+1,1,σc
†
i+1,1,σ (49)

+ cos(qy)c†i+1,2,σc
†
i+1,2,σ)(qy = 0, π)

OCDW( π
2 ,qy)(i) = e−i π

2 i(eiqy/2ni,1 + e−iqy/2ni,2)(
qy = 0,

π

2
, π,−π

2

)
. (50)

The corresponding bosonized expressions is obtained by
those of the charge densities as a function of φρ± and
φσ1,2:

ρ1(x) = − 1
π
∂x(φρ+ + φρ− ) +

ei(φρ++φρ−−2kF x)

πa

× cos
√

2φσ1 (x) +
C

πa
e2i(φρ++φρ−−2kF x), (51)

ρ2(x) = − 1
π
∂x(φρ+ − φρ− ) +

ei(φρ+−φρ−−2kF x)

πa

× cos
√

2φσ2 (x) +
C

πa
e2i(φρ+−φρ−−2kF x). (52)

We consider first qx = π. The charge density wave
order parameters are straightforwardly obtained from
(51–52) as:

OCDW(π,0) ∼ 1
2πα

cos 2φρ+ cos 2φρ− (53)

OCDW(π,π) ∼ 1
2πα

sin 2φρ+ sin 2φρ−. (54)

The bond order wave order parameters measure the charge
density between the sites i and i+ 1, i.e. on site i+ 1/2,
and their bosonized expression reads:

OBOW(π,0) ∼ 1
2πα

sin 2φρ+ cos 2φρ− (55)

OBOW(π,π) ∼ 1
2πα

cos 2φρ+ sin 2φρ−. (56)

Concerning the π/2 charge density wave order parameter,
we have to consider whether φσ− or θσ− is ordered. In
the case θσ− is ordered, the operators cos

√
2φσ,1,2 have

zero expectation value, and exponentially decaying corre-
lations, so that all of the (π/2, qy)-CDW order parameters
have short-range order. When φσ− and φσ+ are ordered,
the operators cos

√
2φσ,1,2 have non-zero expectation val-

ues. In this case, the expression of the order parameters
for (π/2, qy)−CDW as a function of φρ+ and φρ− is:

OCDW( π
2 ,0) ∼ 1

2πα
eiφρ+ cosφρ− (57)

OCDW( π
2 , π

2 ) ∼ 1
2πα

eiφρ+ cos
(
φρ− − π

4

)
(58)

OCDW( π
2 ,π) ∼ 1

2πα
eiφρ+ sinφρ− (59)

OCDW( π
2 ,−π

2 ) ∼ 1
2πα

eiφρ+ cos
(
φρ− +

π

4

)
· (60)

From the knowledge of the order parameters, in the
following we are going to discuss the ground states that
are realized for the various possible ordering of the phase
fields. We will first discuss the orderings with 〈φρ−〉 = π

4
and then turn to orderings with 〈φρ−〉 = 0. As we have ex-
plained in Section 3.2, the latter type of ordering should
be expected for dominant J⊥. In Tables 1–2 we give a
summary of the phases corresponding to 〈φρ+〉 = 0 and
〈φρ+〉 = π

4 . These different phases are detailed in the
forthcoming sections.

4.2 (π, π)-charge density wave

In the case of 〈φρ+〉 = π
4 , 〈φρ−〉 = π

4 , 〈φσ+〉 = 0,
〈θσ−〉 = π

2 (up to a discrete gauge transformation (34)),
the (π/2, qy)−CDW order parameters have all zero ex-
pectation value and exponentially decaying correlations.
Moreover, the (π, π)-CDW order parameter has a non-
zero expectation value, leading to a zig-zag charge order-
ing [41,48]. This ordering is represented in Figure 1. This
charge ordered phase possesses also a spin gap caused by
interchain coupling and identifies with the CDWsg (with
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Table 1. The phases of the quarter-filled ladder in the case
〈φρ+〉 = 0. The locking positions are given up to a global gauge
transformation (34).

〈φρ+〉 = 0 〈φρ−〉 〈φσ+〉 〈φσ−〉 〈θσ−〉
(π

2
, π)-CDW

(π, 0)-CDW
±π

2
0 0 –

(π, 0)-CDW ±π
2

±π
2

– 0

(π, π)-BOW ±π
4

0 – ±π
2

(π
2
, π

2
)-CDW

(π, π)-BOW
±π

4
0 0 –

Table 2. The phases of the quarter-filled ladder in the case
〈φρ+〉 = π

4
. The locking positions are given up to a global gauge

transformation (34).

〈φρ+〉 = π
4

〈φρ−〉 〈φσ+〉 〈φσ−〉 〈θσ−〉
(π

2
, π)-CDW

(π, 0)-BOW
±π

2
0 0 –

(π, 0)-BOW ±π
2

±π
2

– 0

(π, π)-CDW ±π
4

0 – ±π
2

(π
2
, π

2
)-CDW

(π, π)-CDW
±π

4
0 0 –

Fig. 1. The phase with zig-zag charge ordering and spin gap-
(π, π)-CDW. The grey circles represent the local charge den-
sity and the arrows the spins. The empty circles indicate the
absence of spin or charge on that site. The ovals represent the
formation of interchain spin singlets.

spin gap) of reference [48]. The ground state is this phase
is fourfold degenerate (twofold due to translation symme-
try, and twofold due to the two possible orientations of
the spin singlets). We note that this phase has previously
bee discussed in Section 2.1 in the limit of U → ∞, how-
ever in that limit it was not possible to discuss the spin
modes. From the discussion of Section 2.1, we see that the
essential ingredient for the zig-zag ordering is the mutual
locking of the 4kF charge density fluctuations so that zig-
zag ordering needs both strong intrachain and interchain
repulsion. The formation of the spin gap appears to be
unrelated to the zig-zag ordering, but only a consequence
of the coupling of the q = 0 fluctuations. We note however
that the higher order terms derived in Appendix B could
lead in the case of a large charge gap to corrections to
the spin Hamiltonian that could enhance the spin gap. In

Fig. 2. The (π
2
, π

2
)-charge density wave phase. The grey circles

represent the local charge density. The difference in diameter
indicates small or large charge density on that site. Pairs of
arrows pointing in opposite directions indicate the formation
of intrachain spin singlets.

the RG study of equations (35), this phase is obtained for
y3 → +∞, and y2 → +∞.

4.3 (π
2
, π

2
) charge density wave

In the case of 〈φρ+〉 = 〈φρ−〉 = ±π
4 and 〈φσ+〉 =

0, 〈φσ−〉 = 0 a (π
2 ,±π

2 )-CDW state is formed coexisting
with a (π, π)-CDW oscillation. This phase possesses also
an intrachain spin gap. The corresponding state is repre-
sented in Figure 2. A simple physical picture of this state
is that a π

2 -charge density is formed in each chain, and
the interchain repulsion locks the phases of both charge
density waves. Since there is an intrachain gap, this phase
appears to be more likely to be observed in a Hubbard
ladder with U < 0 and V‖ > 0 or in a t-J ladder in a
regime in which J‖ is large enough to cause the formation
of a spin gap in the single chain [71]. The dephasing be-
tween the two charge density waves is 2〈φρ−〉 = ±π

2 . This
dephasing results from the mutual locking of the 4kF den-
sity fluctuations, thus pointing to strong repulsion in the
chain. The corresponding phase has a fourfold degenerate
ground state. In the renormalization group treatment, this
phase is obtained for y1 → −∞ and y3 → +∞.

4.4 (π, 0) bond order wave

For 〈φρ+〉 = π
4 , 〈φρ−〉 = π

2 , 〈φσ+〉 = π
2 , 〈θσ−〉 = 0, all

of the CDW order parameters vanish. The only nonva-
nishing order parameter is (π, 0)-BOW. This BOW can
be described in physical terms in the following way: the
fermions are localized on the bonds between two sites,
and due to the J⊥ interaction, they form a spin singlet
with the fermion on the opposite chain. Clearly, this phase
should be expected at strong J⊥ and moderate repulsion
in the chains. The ground state is only twofold degener-
ate. In the renormalization group, this phase is obtained
for y4 → −∞, y5 + y6 → +∞, and the inspection of the
expression of y4 confirms that J⊥ is the dominant interac-
tion in the (π, 0)-BOW. The corresponding phase is drawn
in Figure 3. We note that since this phase has a uniform
charge density, it is a possible candidate for the homo-
geneous insulator HIsg phase of reference [48]. It is also
interesting to remark that this phase is a two-leg analog
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Fig. 3. The (π, 0)-bond-order wave phase. The connected black
circles represent a bond occupied by an electron. Arrows indi-
cate the spin of the electrons. Ovals represent the formation of
interchain singlet state as in Figure 1.

Fig. 4. The (π
2
, π)-CDW with (π, 0)-BOW. The grey circles

represent the charge density in Figure 2 and the black hor-
izontal lines denote occupied bonds as in Figure 3. Arrows
represent electron spins, and the black horizontal line indicate
that the spins are bound in an intrachain singlet. In contrast
with the pure (π, 0)-BOW the charge density is inhomogeneous
along the chains.

of the SDW1 phase obtained in [77] in a system of coupled
quarter filled extended Hubbard chains.

4.5 (π
2
, π) charge density wave

For 〈φρ+〉 = π
4 , 〈φρ−〉 = π

2 , 〈φσ+〉 = 0, 〈φσ−〉 = 0, the
(π

2 , π)-CDW order parameter does not vanish. The (π, 0)-
BOW correlations are also present in this phase. A sketch
of this phase is given in Figure 4. Similarly to the (π

2 ,
π
2 )-

CDW this phase results from the mutual locking of the
2kF charge density wave fluctuations of the two coupled
chains. However, in contrast to the (π

2 ,
π
2 )-CDW this lock-

ing is produced by the coupling of the 2kF density fluctu-
ations. This implies that the spin gap is formed as a result
of interchain coupling. In the RG study this phase is ob-
tained for y4 → +∞, y5 +y6 → +∞. Using the expression
of y4 we see that this phase is dominated by interchain
repulsion in contrast with the (π, 0)-BOW.

4.6 (π, π) bond order wave

When 〈φρ+〉 = 0,〈φρ−〉 = ±π
4 , 〈φσ+〉 = 0, 〈θσ−〉 = π

2 , all
of the CDW order parameters vanish and only the (π, π)-
BOW order parameter is non-zero. This phase corresponds
to a staggered bond ordering shown in Figure 5. It can be
viewed as a (π, π)-CDW translated by half a lattice spac-
ing. Elementary excitations in this phase are thus similar
to those of the (π, π)-CDW phase. In the renormalization
group such state is obtained for y2 → +∞, y3 → +∞.

Fig. 5. Sketch of the (π, π)-BOW. The symbols have the same
meaning as in Figure 3.

Fig. 6. The (π
2
, π

2
)-CDW with (π, π)-BOW. The symbols have

the same meaning as in Figure 4.

Fig. 7. The (π, 0)-CDW. The symbols have the same meaning
as in Figure 1.

4.7 (π
2
, π

2
) charge density wave

When 〈φρ+〉 = 0,〈φρ−〉 = ±π
4 , 〈φσ+〉 = 0, 〈φσ−〉 = 0,

the (π
2 ,

π
2 )-CDW order parameter does not vanish and co-

exists with a (π, π)-BOW. This phase is different from
the (π

2 ,
π
2 )-CDW previously encountered as the previous

phase contained a (π, π)-CDW. There are however simi-
larities between these two phases since both result from
the mutual locking of 4kF components of density fluctu-
ations combined with an intrachain spin gap. Since the
sign change in g0 results from the formation of an inter-
chain spin gap, we should expect this phase to have only a
rather narrow domain of existence. This phase is sketched
in Figure 6. In the renormalization group treatment, it is
obtained when y1 → −∞, y3 → +∞.

4.8 (π, 0) charge density wave

When 〈φρ+〉 = 0,〈φρ−〉 = ±π
2 , 〈φσ+〉 = π

2 , 〈θσ−〉 = 0,
the only non-vanishing order parameter is the (π, 0)-CDW
one. In the RG study this phase is obtained for y4 → −∞,
y5 + y6 → +∞, i.e. it corresponds to a dominant J⊥,
in agreement with the results of Section 2.2. This phase
can be viewed as the (π, 0)-BOW shifted by a half lattice
spacing. The corresponding phase is sketched in Figure 7.
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Fig. 8. The (π
2
, π)-CDW with (π, 0)-CDW. The grey circles

have the same meaning as in Figure 2. The formation of intra-
chain spin singlets has not been represented.

4.9 (π
2
, π) charge density wave

When 〈φρ+〉 = 0,〈φρ−〉 = ±π
2 , 〈φσ+〉 = 0, 〈φσ−〉 = 0, the

only non-vanishing order parameters are the (π, 0)-CDW
and the (π

2 , π)-CDW ones. Under RG study, this phase is
obtained for y4 → +∞, y5 +y6 → +∞ and corresponds to
dominant V⊥. For this reason, we should expect this phase
to have a rather narrow domain of existence. The spin gap
corresponds again to an intrachain spin gap. This phase
is sketched in Figure 8.

5 Elementary excitations

In the present section, we discuss the nature of the ele-
mentary excitations in the various gapped phases of the
quarter-filled two leg ladder. Due to the spin-charge sepa-
ration, all of the insulating phases have charge excitations
of charge ±e and zero spin. However, the nature of the
magnetic excitations is dependent of the nature of the
phases considered. Below, we review the various phases
with their elementary excitations.

5.1 (π, π)-CDW and (π, 0)-BOW

5.1.1 Charge excitations

In these two phases, y3 → +∞, implying that the effective
Hamiltonian for the charge sector is described by two sine-
Gordon Hamiltonians:

Hc
eff. = Hc

+ +Hc
−, (61)

where

Hc
α =

∫
dx
2π

[
uραKρα(πΠρα )2 +

uρα

Kρα

(∂xφρα)2
]

+
2gα

(2πa)2

∫
dx cos 4φρα , (62)

α = ±. Thus, the elementary excitations can be described
in terms of solitons of two decoupled sine-Gordon models.
Following a semiclassical argument, a soliton is joining
two consecutive minima of the Hamiltonian (62). These

(c)

(b)

(a)

Fig. 9. Excitations of the quarter filled ladder in the zig-
zag charge ordered phase: (a) Charged excitation: it can be
viewed as a domain wall between the two zig-zag charge or-
dered ground states of the ladder or equivalently as a bound
state of two antiholons of the quarter-filled chains. (b) spinon
excitation. It can be viewed as a domain wall on the sponta-
neously dimerized effective zig-zag ladder or as spinon inside
one of the chains. (c) Neutral excitations. It can be viewed ei-
ther as a domain wall between the two zig-zag charge ordered
ground states or as a holon-antiholon bound state.

minimums are given by 〈φρα〉 ≡ π/4[π/2]. As a result, the
charge of solitons is given by:

qα = − 2
π

∫ +∞

∞
∂xφρα = − 2

π
[φρα(+∞)−φρα(−∞)] = ±1.

(63)

These solitons can be understood as domain walls be-
tween the two charge ordered ground states as represented
in Figure 9a and Figure 9c. Alternatively, the charged
solitons can be viewed as holon-holon (for charge −e)
or antiholon-antiholon (for charge +e) bound states. The
neutral solitons can similarly be viewed as holon-antiholon
bound state. An immediate consequence of the mapping of
the charge excitations onto the sine-Gordon model is that
the transport properties of the quarter-filled ladder can
be obtained from the methods reviewed in reference [61].
For Kρα > 1/4, the solitons are the only possible excita-
tions in the model. For more strongly repulsive excitations,
the formation of soliton bound states (breathers) becomes
possible. The existence of these excitations translates into
an exciton peak in the optical conductivity. Such exciton
peak has been studied in the case of the single Hubbard
chain in reference [78]. However, in the model we are con-
sidering, for Kρα < 1/4, intrachain Umklapp scattering
becomes relevant and total/antisymmetric charge excita-
tions do not decouple anymore in this regime.
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5.1.2 Spin excitations

To describe spin excitations, we need to consider the ef-
fective Hamiltonian of the spin modes:

Hσ =
∫

dx
2π

∑
r=±

[
uσ,rKσ,r(πΠσ,r)2 +

uσ,r

Kσ,r
(∂xφσ,r)2

]

+
2g2

(2πα)2

∫
dx cos 2φσ+ cos 2θσ−. (64)

This Hamiltonian corresponds exactly to the bosonized
Hamiltonian of a zig-zag spin ladder [79–81]. Remarkably,
in the strong coupling limit V‖, V⊥, U � t⊥, t, a map-
ping on a zig-zag spin chain was derived to describe the
low energy excitations in the (π, π)-CDW phase [48]. We
thus notice the continuity between the weak coupling and
the strong coupling limit for the spin excitations of the
(π, π)-CDW in this problem. Spin excitations of the quar-
ter filled ladder are those of a zig-zag ladder, i.e. mas-
sive spinons. A more detailed picture of the spin excita-
tions can be gained by applying a transformation due to
Witten and Shankar [81–83]. We first notice that we have
Kσ+Kσ− = 1 and uσ+ = uσ−. Thus, we can perform a
duality transformation φ̃σ− = θσ−, θ̃σ− = φσ−, and intro-
duce:

φa =
φσ+ + φ̃σ−√

2
(65)

φb =
φσ+ − φ̃σ−√

2
· (66)

This procedure permits us to reduce the effective Hamil-
tonian to:

H = Ha +Hb (67)

Ha =
∫

dx
2π

[
uaKa(πΠa)2 +

ua

Ka
(∂xφa)2

]

− g2
(2πα)2

∫
dx cos

√
8φa (68)

Hb =
∫

dx
2π

[
ubKb(πΠb)2 +

ub

Kb
(∂xφb)2

]

− g2
(2πα)2

∫
dx cos

√
8φb, (69)

where ua = ub = uσ+, Ka = Kb = Kσ+ and g2 pre-
serves SU(2) symmetry. The original Hamiltonian (64) is
thus decoupled into two massive sine-Gordon model at the
SU(2) point. They describe two massive spin excitations
carrying spin 1/2. In the strong coupling limit, the spin
excitations can be viewed as the spinons of a zig-zag lad-
der (see Fig. 9).

5.2 (π
2
, π

2
)-CDW

In the (π
2 ,±π

2 )-charge density wave phases, the charge
excitations carry the same quantum numbers as in the

(a)

(b)

Fig. 10. Elementary excitations in the (π, 0)-CDW. Dotted
boxes have been drawn to emphasize the location of these ex-
citations along the ladder. (a) holon and antiholon excitations
carrying the charge ±e respectively. (b) Mixed spin/orbital ex-
citation.

zig-zag charge ordered phase. They correspond to do-
main walls between the four different (π

2 ,
π
2 )-CDW ground

states. However, spin excitations are of a different na-
ture since both Sz

1 and Sz
2 are good quantum numbers.

In fact, these spin excitations are massive spinons “con-
fined” within each chain.

5.3 phases with 〈φρ−〉 = π
2

The total charge excitations still carry ±e, as in the pre-
vious phase, but this time it is not possible to decouple
spin excitations from antisymmetric charge excitations.
When φσ− is ordered, we have φρ−(+∞) − φρ−(−∞) =
±π/2, φσ+(+∞) − φσ+(−∞) = ±π/2 and φσ−(+∞) −
φσ−(−∞) = ±π/2. As a result, the elementary excita-
tions carry total charge zero, charge difference ±e, and
spin Sz

1 = ±1/2 or Sz
2 = ±1/2. These elementary exci-

tations can be viewed as a three body bound state of a
holon in one chain, a antiholon in the other chain and a
spinon. This excitation is sketched in Figure 10.

In fact, there exists an interesting analogy between the
spin/antisymmetric charge sector of the quarter filled lad-
der and the half-filled Hubbard-Kondo-Heisenberg (HKH)
chain.

The half-filled HKH chain is described by the Hamil-
tonian:

H = −t
∑
i,σ

(c†i+1,σci,σ + c†i,σci+1,σ) + U
∑

i

ni,↑ni,↓

+
JK

2

∑
i,α,β

Si · c†i,ασα,βci,β + JH

∑
i

Si · Si+1, (70)
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where σx,y,z are the usual Pauli matrices. At half-filling,
the resulting bosonized Hamiltonian [84–86] reads:

H =
∫

dx
2π

[
uρKρ(πΠρ)2 +

uρ

Kρ
(∂xφρ)2

]

+
∫

dx
2π

[
uσ+Kσ+(πΠσ+)2 +

uσ+

Kσ+
(∂xφσ+)2

]

+
∫

dx
2π

[
uσ−Kσ−(πΠσ−)2 +

uσ−
Kσ−

(∂xφσ−)2
]

+
2JK

(2πa)2

∫
dx cos

√
2φρ [cos 2φσ− − cos 2φσ+

+2 cos2θσ−] . (71)

Making a rescaling φρ =
√

2φρ−,Kρ = 2Kρ−, we ob-
tain the same Hamiltonian as the one describing the
spin/charge difference excitations of the quarter-filled lad-
der (22–27). In particular, the point Kρ− = 1/2 in the
quarter filled ladder corresponds to Kρ = 1 in the Kondo-
Heisenberg chain, i.e. U = 0 in (70). Thus, magnetic prop-
erties near the metal insulator transition of the quarter
filled ladder should be analogous to those of a Kondo-
Heisenberg insulator. Close to Kρ− = 1, the structure
of excitations is quite different. In the vicinity of that
point [87], gapful excitations of the ladder away from half-
filling are described by a massive SO(3) × SO(3) Gross-
Neveu model [88] as a consequence of the breaking of the
original SU(4) symmetry to SU(2)×SU(2). The enhance-
ment of the symmetry by the RG is instead absent for
Kρ− = 1/2.

6 Numerical study of the phase diagram

In this section we discuss the numerical results of the RG
equations. Prior than that we analyze in details the nature
of the transition among the various phases. The analysis
is partially accomplished by a mapping onto a Majorana
fermion theory, that gives also rise to a connection with
the spin-orbital models.

6.1 Mapping on a theory containing Majorana
Fermions

We consider first the part of the Hamiltonian (27) with
couplings g4,5,6. It is convenient to rewrite this part of the
interaction in terms of massive Majorana fermion opera-
tors ξν (ν = 0, 1, 2, 3). Using the identities [89]:

cos 2φσ+

πa
= i(ζR,1ζL,1 + ζR,2ζL,2), (72)

cos 2φσ−
πa

= i(ζR,3ζL,3 + ζR,0ζL,0), (73)

cos 2θσ−
πa

= i(ζR,0ζL,0 − ζR,3ζL,3), (74)

and the relation g5 = g4 + g6, the interaction terms g4,5,6

are rewritten as:

i cos 2φρ−

[
g4

2πa
(ζR,1ζL,1 + ζR,2ζL,2 + ζR,3ζL,3)

+
g5 + g6

2πa
ζR,0ζL,0

]
, (75)

where g5 + g6 is always a positive quantity.
In the continuum limit, following reference [89] we can

express the bosonic exponents in terms of the order (σi)
and disorder (µi) parameters of four Ising models as fol-
lows:

cosφσ+ = σ1σ2, (76)
cosφσ− = σ3σ0, (77)
sinφσ+ = µ1µ2, (78)
cos θσ− = µ3σ0. (79)

When 〈φρ−〉 = π
2 , the Ising order parameter σ0 has

a non-zero expectation value. However the sign of g4 is
not fixed. For g4 > 0, and 〈φρ−〉 = π

2 , σ1,2,3 have all
nonzero expectation values, corresponding to have both
φσ+ and φσ− ordered. For g4 < 0, µ1,2,3 have all nonzero
expectation values, corresponding to having both φσ+ and
θσ− ordered.

Now, we would like to focus on the interaction part of
the Hamiltonian that contains the terms g1, g2, gσ±. Using
the mapping on Majorana fermions, we can write this part
as:
gσ+

2π2
(∂xφσ+)2 +

gσ−
2π2

(∂xφσ+)2 +
g1

2(πa)2
cos 2φσ− cos 2φσ+

+
g2

2(πa)2
cos 2θσ− cos 2φσ+ =

− gσ+ζR,1ζL,1ζR,2ζL,2 − gσ−ζR,0ζL,0ζR,3ζL,3

− g+(ζR,1ζL,1 + ζR,2ζL,2)ζR,0ζL,0

− g−(ζR,1ζL,1 + ζR,2ζL,2)ζR,3ζL,3. (80)

where g± = (g1 ± g2)/2. Using the SU(2) symmetry
conditions(44), this expression can be further rewritten as:

− gσ+(ζR,1ζL,1ζR,2ζL,2 + ζR,1ζL,1ζR,3ζL,3

+ ζR,2ζL,2ζR,3ζL,3)
− gσ−(ζR,1ζL,1 + ζR,2ζL,2 + ζR,3ζL,3)ζR,0ζL,0, (81)

which makes the SU(2) symmetry transparent. We note
that for gσ− > 0, i〈ζR,aζL,a〉 can have opposite signs de-
pending whether a = 0 or a 
= 0. This implies that either
〈µ0〉 
= 0 and 〈σ1,2,3〉 
= 0 or 〈σ0〉 
= 0 and 〈µ1,2,3〉 
= 0.
Both cases correspond to having θσ− and φσ+ ordered.
When gσ− < 0, we have both φσ+ and φσ− ordered.

6.1.1 Spin-orbital models

Before closing this section, we would like to discuss the
following connection. If we consider the case of V‖ = 0,
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J⊥ = 0 and V⊥ = U , we can rewrite the interchain inter-
action in equation (1) as:

U

2

∑
i

(ni,1,↑ + ni,1,↓ + ni,2,↑ + ni,2,↓)2, (82)

which has a manifest SU(4) invariance. Thus the problem
is related to the quarter-filled SU(4) Hubbard model [90].
The charge Umklapp term derived for that model [90]
agrees with (23). If U is large enough, the low energy ex-
citations are those of an antiferromagnetic chain of SU(4)
spins [90]. Considering deviations from the SU(4) sym-
metric point, it is possible to derive a model describing
the low energy excitations of the insulator [41] in terms of
coupled spin and orbital modes (the spin-orbital model).
In references [88,91,92], a SU(2) × SU(2) spin-orbital
symmetric model was analyzed perturbatively around the
SU(4) point using bosonization and refermionization tech-
niques. An Hamiltonian describing the low energy dynam-
ics of the system with six Majorana fermions was obtained,
and the formation of a dimerized spin gapped phase was
predicted in the physical range of parameters. The exis-
tence of this dimerized phase was also confirmed by nu-
merical studies [92,93]. In our present problem, assuming
Kρ− ∼ 1 so that the term containing g3 can be neglected,
and using the mapping:

cos 2φρ−
πa

= i(ζR,4ζL,4 + ζR,4ζL,4), (83)

we can recast the interactions in the spin/antisymmetric
charge sector of equation (27) in terms of two triplets of
Majorana fermions: (ζ1, ζ2, ζ3) representing the spin exci-
tations, and (ζ0, ζ4, ζ5) representing the orbital excitations
as in references [88,91,92]. The Hamiltonian we obtain is
however more general, since we did not assume any SU(2)
symmetry in the orbital sector. From our previous discus-
sion of the phase diagram in Section 4 we expect that
the dimerized phase (Phase IV in Ref. [92] or Phase A in
Ref. [91]) of the spin-orbital model is related to the (π, 0)-
BOW. In a different limit [94,95] of the SU(2) × SU(2)
spin-orbital model, a dimerized insulating phase analo-
gous to the (π, 0)-BOW was also obtained. We note that
no charge ordering is predicted by the SU(2)×SU(2) spin
orbital model. The reason for this is that the V‖ term of
the ladder model produces a large renormalization of Kρ−
in the charge ordered state, while leaving Kσ−,Kσ+ close
to the non-interacting value, due to the remaining SU(2)
symmetry. To describe charge ordering, one has thus to
consider more general spin-orbital models in which the
interaction in the orbital sector has only the U(1) symme-
try [41].

6.2 Order of the transitions between the different
phases

We now turn to the quantum phase transitions between
the different phases of the quarter-filled ladder. These
phase transitions can result from a change of the ordering

in the φρ− field, the spin gap being preserved, or from a
change of the ordering in the spin sector. As we will see
below, the former phase transitions are of second order
and belong to the one-dimensional quantum Ising univer-
sality class, whereas the latter transitions can be either
of second and first order. We begin discussing the Ising
transitions in the antisymmetric charge mode.

6.2.1 Ising transitions

We consider phase transitions in which the order in the
spin sector is not changed, but the order in the antisym-
metric charge sector φρ− is modified. These transitions
occur between the (π, 0)-BOW and the (π, π)-CDW, the
(π

2 , π)-CDWs and the (π
2 ,

π
2 )-CDWs, the (π, π)-BOW and

the (π, 0)-CDW. Since the order in the spin sector does
not change we can describe the transition by concentrat-
ing only on the φρ− modes. The resulting effective Hamil-
tonian reads:

Hρ− =
∫

dx
2π

[
uρ−Kρ−(πΠρ−)2 +

uρ−
Kρ−

(∂xφρ−)2
]

+
2g3

(2πa)2

∫
dx cos 4φρ− +

2g
(2πa)2

∫
dx cos 2φρ−. (84)

This Hamiltonian is the one of the double sine-Gordon
model [96]. The semiclassical analysis of the double cosine
potential shows that for 〈φρ−〉 = ±π

4 , 〈cos 2φρ−〉 = 0. Us-
ing the result of [96], this implies that as g is varied, an
Ising transition is obtained in φρ−. For the sake of simplic-
ity, let us consider the transition between the (π, 0)-BOW
and the (π, π)−CDW. Similar features appear in all the
other Ising transitions. In the (π, π)-CDW, the order pa-
rameter OCDW(π,π) ∼ sin 2φρ−. Using the results of [96]
on the ultraviolet-infrared transmutation of operators, it
is easily seen that OCDW(π,π) ∼ µ, where µ is the dis-
order parameter of a quantum Ising model. This implies
in particular that 〈OCDW(π,π)(x)OCDW(π,π)(0)〉 ∼ x−1/4

at the transition. Moreover, near the transition one has:

〈OCDW(π,π)〉 ∼
(

a∆ρ−
v

)1/8

. If the gap ∆ρ− vanishes lin-
early with the interaction V this implies 〈OCDW(π,π)〉 ∼
(V −Vc)1/8, giving rise to the onset of the order parameter
at a critical value Vc. Such onset was numerically observed
at the homogeneous insulator HIsg-CDWsg transition in
reference [48] and attributed to an Ising transition.

A simple picture of the transition is obtained, in the
limit of strong coupling V⊥ → ∞, by an effective quantum
Ising model. In this picture, the only states retained are
the electron pairs forming singlets along the diagonal and
pointing either in the northwest or northeast direction.
The variable σz = 1 when the diagonal singlet formed of
two electrons is oriented northwest (NW), and σz = −1
when the singlet is oriented northeast (NE). In the ground
state all the electron pairs must have the same orientation.
The corresponding potential energy reads:

Hpot. = −V‖
∑

n

σz
nσ

z
n+1. (85)
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The kinetic energy comes from the term t. In second order
perturbation theory, t flips a singlet pair from the NW to
NE orientation. This process leads to a kinetic term in the
Hamiltonian:

Hkin. =
t2‖
V⊥

σx
n. (86)

When the kinetic term in the Hamiltonian dominates, the
singlet pairs go back and forth between NE and NW orien-
tation leading to a zero average of the (π, π)-CDW order
parameter, and an effective bond order wave. When the
potential energy dominates, the singlet pairs are all locked
in the NE or NW orientation giving rise to a nonzero
(π, π)-CDW.

6.2.2 Spin transitions

In the present section, we discuss the transitions in the
spin sector. Since the gaps in theφρ− and φρ+ sectors are
robust, we can concentrate on a low energy effective spin
model. First, let us focus on the case of 〈φρ−〉 = π

2 . In
that case, the discussion is equivalent to the one in ref-
erence [52]. The theory describing the transition point is
the O(3) Gross-Neveu model, and the operator that takes
the system away from the transition point is the mass of
the Gross-Neveu fermions. As a result, the system will
have a second order phase transition in the SU(2)2 WZW
model universality class when the O(3) Gross-Neveu has
no spontaneous symmetry breaking and a first order tran-
sition when the Gross-Neveu model presents dynamical
mass generation [97,98]. For gσ+ < 0, there is a sponta-
neous symmetry breaking and thus a first order transition.
Since this corresponds to J⊥ > 0, first order spin transi-
tions should be generic in the models we are considering.
In particular, first order transitions should be expected be-
tween phases such as the (π, 0)-BOW and the (π

2 , π)-CDW
or the (π, 0)-CDW and the (π

2 , π)-CDW. These first order
transitions occur in the spin sector and should be observ-
able by looking at spin-spin correlations. In the case of
〈φρ−〉 = π

4 , we have to focus on the terms coming from
g1, g2, gσ±. In that case, for a transition to be possible we
must have gσ− = 0 as one can see directly from equa-
tion (80). The behavior at the transition then depends on
the sign of gσ+. When gσ+ > 0, no gap is generated in the
triplet modes thus giving a SU(2)1×SU(2)1 criticality. For
gσ+ < 0, the triplet modes remain massive at the transi-
tion, leading to an Ising criticality. Since gσ+ ∼ −J⊥ < 0,
an Ising transition is obtained between the (π, π)-BOW
and the (π

2 ,
π
2 )-CDW or the (π, π)-CDW and the (π

2 ,
π
2 )-

CDW.

6.3 RG calculation

To find the phase diagram, we integrate the equations (47)
numerically using a fourth order Runge-Kutta algorithm
for fixed values of Kρ− at varying V⊥ and J⊥. We stop the
numerical integration when one of the coupling constants
y3, y5, y6 becomes of order 1. We find that at this scale,

2
π ,π( )
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v Fπ
a

J⊥a
v Fπ

CDW

(π,0)BOW
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Fig. 11. The topology of the phase diagram of the quarter
filled ladder for Kρ− � 1/2. Only the (π, 0)-BOW and the
(π

2
, π)-CDW are obtained.

π
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Fig. 12. The topology of the phase diagram of the quarter
filled ladder for 1/2 > Kρ− � 1/3. The (π

2
, π

2
)-CDW appears

at large V⊥.

|y1|, y2 are still inferior to 1. We have the following results.
First, for Kρ− larger than 1/3, (Kρ− � 1/2) the (π

2 ,
π
2 )-

CDW and (π, π)-CDW are absent. This is a consequence
of the fact that in this regime, the 2kF fluctuations are
dominant over the 4kF ones. As a result, we find either the
bond order wave (π, 0)-BOW or the (π

2 , π)-CDW. As could
be expected, a large J⊥ favors the former, and a large
V⊥ favors the latter. A first order transition is expected
between these two phases. The phase diagram for Kρ− =
0.5 is drawn in Figure 11. When Kρ− becomes smaller but
still larger than 1/3, the term cos 4φρ− is more relevant
and the (π

2 ,
π
2 )-CDW phase becomes stable at large V⊥.

This can be understood as resulting from an increase in
the strength of 4kF fluctuations. The phase diagram for
Kρ = 0.35 is sketched in Figure 12. For Kρ− close to 1/3,
the topology of the phase diagram becomes more complex.
The (π, π)-CDW phase is present for competing V⊥, J⊥,
along with the (π, 0)-BOW and the two other CDWs. The
phase diagram is sketched in Figure 13. Finally, forKρ− <
1/3, cos 4φρ− is the most relevant operator, and the (π

2 , π)-
CDW phase disappears altogether. The (π, π)-CDW phase
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Fig. 13. The topology of the phase diagram of the quarter
filled ladder for Kρ− � 1/3. The size of the (π
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region has been exaggerated.
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Fig. 14. The topology of the phase diagram of the quarter
filled ladder for Kρ− < 1/3. The (π, 0)-BOW is obtained for
strong J⊥ and the (π
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, π

2
)-CDW is obtained for strong V⊥. The

(π, π)-CDW is obtained in the intermediate regime.

is obtained for V⊥, J⊥ intermediate, whereas for strong J⊥,
the (π, 0)-BOW is obtained and for strong V⊥, the (π

2 ,
π
2 )-

CDW is obtained. The phase diagram for Kρ− = 0.3 is
sketched in Figure 14.

6.4 Commensurate-incommensurate transitions

6.4.1 Deviations from quarter filling

Away from quarter filling, the number of particles is fixed
via a chemical potential that affects only Hρ+. The charge
modes are described by the Hamiltonian:

Hρ+ =
∫

dx
2π

[
uρ+Kρ+(πΠρ+)2 +

uρ+

Kρ+
(∂xφρ+)2

]

−2µ
π

∫
dx∂xφρ+ − 2V⊥a

(2πa)2

∫
dx cos 4φρ+ (87)

where µ measures the difference in chemical potential. A
standard argument [99–101] then shows that for a differ-
ence in chemical potential of the order of the gap of the
quarter filled system, a commensurate-incommensurate
(C-I) transition occurs and the system becomes gapless.
The renormalized K∗

ρ+ exponent at the gapless point is

such [101] that the dimension of the operator cos 4φρ+ is
one, which gives K∗

ρ+ = 1/4. This result has been pre-
viously derived from different arguments in reference [19]
and checked against numerical simulations.

In the incommensurate phase, the π
2 -CDW cor-

relations are the dominant ones as they behave as
〈eiφρ+(x)e−iφρ+(0)〉 ∼ x−Kρ+/2. Subdominant π-BOW or
π-CDW correlations are also present and behave as:
〈ei2φρ+(x)e−i2φρ+(0)〉 ∼ x−2Kρ+ . Right at the transition,
the respective exponents are 1/8 and 1/2.

In principle, superconducting correlations are also pos-
sible. The only surviving superconducting order parame-
ter is the d-wave one. Its lattice expression is given by:

Od
SC(i) =

∑
σ

(ci,1,σci,2,−σ − ci,2,σci,1,−σ). (88)

One finds that this pairing operator behaves as
〈eiθρ+(x)e−iθρ+(0)〉 ∼ x−1/(2Kρ+). Right at the C-I transi-
tion, these correlations have an exponent 2 which indicates
that superconductivity is largely dominated by CDW cor-
relations. In a doped quarter filled insulator the presence
of the spin gap is therefore insufficient to render supercon-
ducting correlations dominant. This is to be contrasted
with the case of the half-filled ladder [102] where super-
conducting correlations are dominant in the conducting
phase.

6.4.2 Effect of a magnetic field

An applied magnetic field couples to the ladder via a term:

Hmag. = −h
π

∫
dx∂xφσ+. (89)

It is well known that a magnetic field applied to a spin
gap system can produce a Luttinger liquid like phase [103]
when the field becomes larger than the gap. The effect of
the magnetic field is different in the case of strong re-
pulsion (〈φρ−〉 = π

4 ) and in the case of weaker repul-
sion (〈φρ−〉 = π

2 ). For strong repulsion the spin-gap is
caused by the terms g1 or g2. The effect of the applied
field is to render these two terms irrelevant. As a re-
sult, both φσ+ and φσ− have gapless excitations leading
to a C0S2 phase in the notations of reference [31]. This
C0S2 phase contains in chain 2kF charge density and spin-
density wave power-law correlations. One finds in the case
of C0S2 phase obtained by applying a magnetic field to
the (π, π)−CDW or the (π, π)−BOW:

〈OCDW2kF ,p
(x)OCDW2kF ,p

(0)〉 ∼
cos(

πx

2a
) cos(πmx)

const.
x5/4

, (90)

〈Sz
p (x)Sz

p (0)〉 ∼ 1
x2

+ cos(
πx

2a
) cos(πmx)

const.
x5/4

, (91)

〈Sx
p (x)Sx

p (0)〉 ∼ const.
cos(πmx)
x5/2

+ cos
(πx

2a

) const.
x5/4

, (92)
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where exponents have been obtained from the transforma-
tion of reference [81] and Section 5.1.2 by requiring that
at the transition the dimension of the relevant operators
leading to the spin gap in equation (67) be of dimension
one [101]. In the case of the C0S2 phase obtained by
applying a magnetic field to the (π

2 ,
π
2 )-CDWs, one finds

instead [103]:

〈OCDW2kF ,p
(x)OCDW2kF ,p

(0)〉 ∼

cos(
πx

2a
) cos(πmx)

const.
x1/2

(93)

〈Sz
p (x)Sz

p(0)〉 ∼ 1
x2

+ cos(
πx

2a
) cos(πmx)

const.
x1/2

(94)

〈Sx
p (x)Sx

p (0)〉 ∼ const.× cos(πmx)
x5/2

+ cos(
πx

2a
)
const.
x2

· (95)

For weaker repulsion, the spin gap is caused by the
terms g4, g5, g6. The application of the magnetic field then
produces only a suppression of the gap in φσ+ giving a
C0S1 phase. The behavior of the induced spin density
wave correlations depends on whether φσ− or θσ− is or-
dered in the parent case. In the first case, which corre-
sponds to the (π

2 , π) CDWs under strong magnetic field,
critical correlations develop in Sz

p(x) as well as in the
(π

2 , qy)-CDW order parameters with an exponent of 1. In
the second case, which corresponds to the (π, 0)-BOW and
the (π, 0)-CDW under strong magnetic field, only Sx,y

p be-
come critical with an exponent of 1/4.

7 Conclusions

In the present paper, we have studied charge ordering in
the two-leg Hubbard ladder at quarter filling. Focusing in
the regime of strong-coupling on-site Coulomb repulsion
U , we have investigated the interplay of the interchain
Coulomb repulsion V⊥ and the exchange interaction J⊥ on
charge ordering, and a variety of spin-gapped charge den-
sity waves and bond-order waves have been obtained. In
particular, when the intrachain repulsion is strong enough,
the ground state of the system exhibits a zig-zag charge or-
der state similar to the phase described in numerical stud-
ies [48]. We have obtained the complete phase diagram in
the J⊥ − V⊥ plane by numerical integration of perturba-
tive renormalization group equations and discussed the
transitions between the various charge ordered and bond-
ordered states. The results show that phase transitions can
occur by an ordering in the antisymmetric charge sector
or the spin sectors. The quantum phase transition in the
spin sector, as in the half-filled case, is described by the
O(3) Gross-Neveu model [51,52] with a mass term and can
be either second or first order. The transition in the an-
tisymmetric charge sector which is proper to the quarter-
filled ladder belongs to the Ising universality class. This

type of Ising transition is expected to separate the zig-
zag charge ordered state from a bond ordered wave phase.
We have further analyzed the charge and spin excitations
in the various gapped phases. Due to charge-spin separa-
tion, all of the insulating phases have spinless holon exci-
tations of charge ±e. However, the magnetic excitations
depend on the nature of the phases considered. For strong
intrachain repulsion, they can be either massive spinons
confined in each chain in the case of the (π

2 ,
π
2 )-CDWs

or domain walls of a dimerized effective zig-zag ladder in
the case of a zig-zag charge ordered state in agreement
with reference [48]. In the case of weaker intrachain re-
pulsion, we have discussed the analogy of the excitations
spin/antisymmetric charge sector of the quarter filled lad-
der with those of a half-filled Hubbard-Kondo-Heisenberg
chain. In the framework of bosonization we have discussed
the connection with other effective models of the quarter-
filled ladder, such as the spin-orbital models [88,92]. We
have briefly discussed the physics away from quarter fill-
ing, where commensurate-incommensurate transitions can
occur. The analysis of correlations functions show that
CDW correlations largely dominate superconducting fluc-
tuations at odds with half-filled ladders [102]. Finally, we
have discussed the effect of magnetic fields strong enough
to lift the spin gaps and show that the induced spin density
wave correlations sharply distinguish the different charge
ordered and bond ordered phases.

We would like to point out that although our results do
not directly apply to the NaV2O5 compound, since in this
material t⊥ = 2t‖, our model is able to reproduce a zig-zag
charge ordered state with spin gap. It would be interesting
to compare the features of the zig-zag state we predict
with the one obtained in NaV2O5. In this perspective, it
would be interesting to study in details a model in which
interchain hopping is fully taken into account following the
approach of [30,31]. It would also be interesting to extend
our analysis to zig-zag ladder models, since experimental
realizations of these systems are now available [53].

We thank N. Andrei, M. Cuoco, P. Lecheminant and T.
Giamarchi for discussions and comments. E. Orignac acknowl-
edges support from Ministère de la Recherche et des Nouvelles
Technologies under a grant “ACI Jeunes chercheurs”.

Appendix A: Derivation of the Umklapp
term from the lattice Hamiltonian
of the quarter-filled ladder

In this appendix, we give a derivation of the cos 4φρ+ term
in the bosonized charge Hamiltonian (23) of the quarter
filled ladder following reference [14]. To derive this term,
one needs to separate the low energy processes which keep
all the particles near the Fermi points ±kF from the high
energy processes that involve transfer of particles near the
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Fig. 15. The diagrams that give rise to the cos 4φρ+ term.

points ±3kF . By eliminating the latter high energy pro-
cesses, one is left with an effective action that involve only
the Fermi points. The details of the procedure to eliminate
the high energy states are exposed in reference [14]. The
processes that give rise to the cos 4φρ+ are represented
diagrammatically in Figure 15.

The corresponding terms in the action read for dia-
gram (a):

Sa =
1

2L3

∑
r=R,L

∑
k1,k′

1
q1

∑
p1,σ1
p′
1,σ′

1

∫ β

0

dτ1
∑

k2,k′
2

q2

∑
p2,σ2
p′
2,σ′

2

∫ β

0

dτ2

×
∑

k3,k′
3

q3

∑
p3,σ3
p′
3,σ′

3

∫ β

0

dτ3X
p1,p′

1
σ1,σ′

1
X

p2,p′
2

σ2,σ′
2
Y

p3,p′
3

σ3,σ′
3

× 〈(c†k1+q1,−r,p1,σ1
c†k′

1−q1,−r,p′
1,σ′

1
ck′

1,r,p′
1,σ′

1
dk1,−r,p1,σ1)(τ1)

× (c†k2+q2,−r,p2,σ2
c†k′

2−q2,−r,p′
2,σ′

2
ck′

2,r,p′
2,σ′

2
dk2,−r,p2,σ2)(τ2)

× (d†k3+q3,−r,p3,σ3
d†k′

3−q3,−r,p′
3,σ′

3
ck′

3,r,p′
3,σ′

3
ck3,r,p3,σ3)(τ3)〉d,

(96)

for diagram (b):

Sb =
1

2L3

∑
r=R,L

∑
k1,k′

1
q1

∑
p1,σ1
p′
1,σ′

1

∫ β

0

dτ1
∑

k2,k′
2

q2

∑
p2,σ2
p′
2,σ′

2

∫ β

0

dτ2

×
∑
k3,k′

3
q3

∑
p3,σ3
p′
3,σ′

3

∫ β

0

dτ3X
p1,p′

1
σ1,σ′

1
X

p2,p′
2

σ2,σ′
2
Z

p3,p′
3

σ3,σ′
3

× 〈(d†k1+q1,r,p1,σ1
c†k′

1−q1,−r,p′
1,σ′

1
ck′

1,r,p′
1,σ′

1
ck1,r,p1,σ1)(τ1)

× (c†k2+q2,−r,p2,σ2
c†k′

2−q2,−r,p′
2,σ′

2
ck′

2,r,p′
2,σ′

2
dk2,−r,p2,σ2)(τ2)

× (c†k3+q3,−r,p3,σ3
d†k′

3−q3,−r,p′
3,σ′

3
ck′

3,r,p′
3,σ′

3
dk3,r,p3,σ3)(τ3)〉d,

(97)

for diagram (c):

Sc =
1

2L3

∑
r=R,L

∑
k1,k′

1
q1

∑
p1,σ1
p′
1,σ′

1

∫ β

0

dτ1
∑
k2,k′

2
q2

∑
p2,σ2
p′
2,σ′

2

∫ β

0

dτ2

×
∑
k3,k′

3
q3

∑
p3,σ3
p′
3,σ′

3

∫ β

0

dτ3X
p1,p′

1
σ1,σ′

1
X

p2,p′
2

σ2,σ′
2
X

p3,p′
3

σ3,σ′
3

× 〈(d†k1+q1,r,p1,σ1
c†k′

1−q1,−r,p′
1,σ′

1
ck′

1,r,p′
1,σ′

1
ck1,r,p1,σ1)(τ1)

× (c†k2+q2,−r,p2,σ2
c†k′

2−q2,−r,p′
2,σ′

2
ck′

2,r,p′
2,σ′

2
dk2,−r,p2,σ2)(τ2)

×(c†k3+q3,−r,p3,σ3
d†k′

3−q3,−r,p′
3,σ′

3
dk′

3,−r,p′
3,σ′

3
ck3,r,p3,σ3)(τ3)〉d,

(98)

where we use notations similar to those of reference [14].
The differences with reference [14] are the following. The
most important is the apparition of a chain index p = 1, 2
for the fermions. Another difference (very minor) is that
we write the annihilation operator for fermions with mo-
mentum close to kF , cR and dR for fermions with momen-
tum close to 3kF . For fermions with momentum close to
−kF and −3kF we write the respective annihilation oper-
ators cL and dL. We also have by definition −R = L and
−L = R. We have the following expressions for X,Y, Z:

Xpp′
σσ′ =

Ua

2
δσ,−σ′δp,p′ + V⊥a(1 − δp,p′) (99)

Y pp′
σσ′ = (Uaδσ,−σ′ − 2V‖)δp,p′ + V⊥a(1 − δp,p′) (100)

Zpp′
σσ′ =

(
Ua

2
δσ,−σ′ − V‖

)
δp,p′ + V⊥a(1 − δp,p′). (101)

The operators dR, dL annihilate states of high energy.
In the low energy limit, these states do not appear and
should therefore be integrated out [14]. This is the mean-
ing of the symbol 〈. . .〉d. These states are integrated out
by using the following Green’s function for the d fermions:

〈dk,r,p,σ(τ)dk′ ,r′,p′,σ′(0)〉 = − 1
2
√

2t
δk,k′δr,r′δp,p′δσ,σ′

(102)
where t is the transfer integral of the extended Hubbard
model. This integration gives rise to a term that describes
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the collision of four fermions with 8kF Umklapp. This
term reads:

S=
1

8t2

∫
dxAp1p′

1p2p′
2

σ1σ′
1σ2σ′

2
(ψ†

R,p1,σ1
ψL,p1,σ1)(ψ

†
R,p′

1,σ′
1
ψL,p′

1,σ′
1
)

(ψ†
R,p2,σ2

ψL,p2,σ2)(ψ
†
R,p′

2,σ′
2
ψL,p′

2,σ′
2
) + h.c. (103)

If all the fermions belong to the same chain(p1 = p′1 =
p2 = p′2) , one recovers the term cos 4

√
2φρ,p derived in

reference [14]. For the case (p1, σ1) = (1, ↑), (p′1, σ
′
1) =

(1, ↓) (p2, σ2) = (2, ↑), (p′2, σ
′
2) = (2, ↓) (and all the 4! =

24 cases equivalent by permutation), the Umklapp term
(103) can be bosonized in the form:

S = g

∫
dx cos(2(φ1,↑ + φ1,↓ + φ2,↑ + φ2,↓))

= g

∫
cos 4φρ+ (104)

This leads to the term we derived phenomenologically.
Finding the expression of g is only a tedious calculation.
The final result is:

g =
V⊥(U2 + 10V⊥U + 4V 2

⊥ − 4V‖V⊥)α
32t2π2α2

· (105)

Appendix B: Phenomenological spin density

In this appendix, we give a phenomenological derivation
of the 2nkF Fourier components of the spin density that
generalizes the equations (18–20). Let us begin with Sz(x).
If we have a system of fermions with both spins up and
down, we can write the following expression [72] for the
spin density:

ρα(x) = ρ0 − 1
π
∂xφα +

∑
m

Am cos 2m(φα − kFx). (106)

Expressing these quantities in terms of φρ, φσ, forming the
difference and taking into account the term cos

√
8φσ in

the Hamiltonian, we obtain the expression:

Sz(x) = − 1
π
√

2
∂xφσ

+
∑
m

Bm sin
√

2mφσ sin(m
√

2φρ − 2kFx). (107)

Since the Hamiltonian of spin excitations contains a term
cos

√
8φσ, new terms will be generated by fusion of this

operator with Sz(x). For m odd, the fusions will generate
a term sin

√
2φσ. For m even, the fusions will generate a

term ∂xφσ. This leads to the following phenomenological
expression for Sz(x):

Sz(x) = − 1
π
√

2
∂xφσ

∑
m

A2m,z sin 2m(
√

2φρ − 2kFx)

+
∑
m

A2m+1,z sin
√

2φσ sin(2m+ 1)(
√

2φρ − 2kFx).

(108)

The usual expression of the spin density (20) is recov-
ered for A2m,z = 0 and A2m+1,z = 0 for m ≥ 1. For the
Sx,y(x) similar expressions can be obtained. Starting from
the phenomenological Haldane expansion of the fermion
creation and annihilation operators [72]:

ψσ(x) ∼ e
i√
2
(θρ+σθσ)

∞∑
m=−∞

ei(2m+1)[
(φρ+σφσ)√

2
−kF x]

, (109)

we easily obtain:

S+(x) ∼
ei
√

2θσ

∑
m,m′

ei[(m−m′)(
√

2φρ−2kF x)+(m+m′+1)
√

2φσ ]. (110)

We note that m+m′+1 andm−m′ have different parities.
We see easily that by fusion with cos

√
8φσ, the terms in

φσ with m+m′+1 odd will be reduced to cos
√

2φσ while
the terms with m+m′ + 1 even will be reduced to 1. The
expression of S+(x) therefore reduces to:

S+(x) ∼ ei
√

2θσ

∑
m

A2m+1,xei(2m+1)(
√

2φρ−2kF x)

+ ei
√

2θσ cos
√

2φσ

∑
m

A2m,xei2m(
√

2φρ−2kF x). (111)

We can check that the expressions we have obtained lead
to rotational invariant expression of the spin correlations
for Kσ = 1, provided that Am,z = Am,x for all m.

Equations (108–111) can also be derived from a more
physical argument. The Ogata-Shiba wavefunction tell us
that in the limit of U/t� 1, the spin excitations can be de-
scribed as a “squeezed” antiferromagnetic spin chains, the
spins being carried by the electrons [58]. The spin density
should therefore be described by the following expression:

S(x) =
∑

n

Snδ(x− xn), (112)

where the xi are the positions of the electrons along the
chain, labelled in such way that x1 < x2 < . . . < xN .
The vector Sn can be decomposed into a staggered and a
uniform component as Sn = Jn+(−)nnn. We will assume
that both Jn and nn are slowly varying at the scale of the
average interparticle distance so that we can write: Jn =
J(x = xn), nn = n(x = xn), the functions J(x), n(x)
varying smoothly between the points xn. We note that the
integral from −∞ to +∞ of J is the total magnetization
operator and also the generator of the rotations. Thus,
we expect the functions J and n to obey the following
commutation relations:

[Ja(x), Jb(x′)] = iεabcJ
c(x)δ(x − x′)(a 
= b), (113)

[Ja(x), nb(x′)] = iεabcn
c(x)δ(x − x′)(a 
= b), (114)

that coincide with the usual commutation relation of the
generator of the rotations and the staggered magnetic
field [104]. Moreover, since the spin excitations of a spinful
Luttinger liquid are expected to be described by a single
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gapless boson, as those of a spin-1/2 chain, it is natural
to identify J to the bosonized uniform spin density of a
spin 1/2 chain, and n to the staggered spin density. The
corresponding expression reads:

J+(x) = Jx + iJy ∼ ei
√

2θσ cos
√

2φσ;n+ ∼ ei
√

2θσ

Jz = − 1
π
√

2
φσ;nz ∼ sin

√
2φσ. (115)

Let us now introduce a function φ(x) such that φ(xn) =
nπ. We can rewrite the delta function as:

∑
n

δ(x− xn) =
∑

n

δ(φ(x) − nπ)
dφ
dx

=
∑
m

ei2mφ(x) dφ
dx
, (116)

and we have: eiφ(x) = (−)n. This allows us to write:

S(x) =

J(x)
∑
m

ei2mφ(x) dφ
dx

+ n(x)
∑
m

ei(2m+1)φ(x) dφ
dx

· (117)

Since φ(x) must be nπ each time that there is a particle,
we have that φ(x) = φ↑(x) + φ↓(x), from which we easily
obtain: φ(x) = πρ0x−

√
2φρ. Using the bosonized expres-

sions (115) of J and n in terms of φσ the expressions (108–
111) are then easily seen to be equivalent to (117). Apply-
ing the expression (117) to our problem we see that the
terms coming from the 4kF component of the spin density
are less relevant and read:

(cos 4φρ+ + cos 4φρ−)J1 · J2. (118)

The contribution of these terms to the Hamiltonian (22)
can thus usually be neglected being less relevant. How-
ever, in the case of J⊥ sufficiently large, a gap may be
formed in the modes ρ−, σ± at higher energy scale than
in ρ+. In that case, the terms we have derived can lead to
a modification of the coefficient g0 of the term cos 4φρ+

in (23) and a change of the ground state expectation value
of φρ+ from π

4 to 0 if J⊥ is large enough.
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